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The Josephson current through a long s-wave superconductor/weak ferromagnet/s-wave superconductor
weak link is studied theoretically in the regime of nonequilibrium spin-dependent occupation of electron states
in the ferromagnetic interlayer. While under the considered nonequilibrium conditions, the standard supercur-
rent, carried by the singlet part of current-carrying density of states, practically is not modified, the additional
supercurrent flowing via the triplet part of the current-carrying density of states appears. Depending on voltage,
controlling the particular form of spin-dependent nonequilibrium in the interlayer, this additional current can
enhance or reduce the usual current of the singlet component and also switch the junction between 0 and �

states.
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New states have been predicted and observed in Joseph-
son weak links in the last years. One of them has common
origin with the famous Larkin-Ovchinnikov-Fulde-Ferrel
�LOFF� state.1,2 This mesoscopic LOFF state, which is in-
duced in superconductor/weak ferromagnet/superconductor
�SFS� Josephson junction, was predicted theoretically3,4 and
observed experimentally.5–8 In this state, Cooper pair ac-
quires the total momentum 2Q or −2Q inside the ferromag-
net as a response to the energy difference between the two
spin directions. Here Q�h /v f, where h is an exchange en-
ergy and v f is the Fermi velocity. Combination of the two
possibilities results in the spatial oscillations of the conden-
sate wave function ��x� in the ferromagnet along the direc-
tion normal to the SF interface. �s�x��cos�2Qx� for the sin-
glet Cooper pair.9 The same picture is also valid in the
diffusive limit. The only thing we need to add is an extra
decay of the condensate wave function due to scattering. In
the regime h� ���, where � is a superconducting order pa-
rameter in the leads, the decay length is equal to the mag-
netic coherence length �F=�D /h while the oscillation period
is given by 2��F. Here D is the diffusion constant in the
ferromagnet, �=1 throughout the paper.

The presence of an exchange field also leads to the for-
mation of the triplet component of the condensate wave
function in the interlayer. In the case of a homogeneous ex-
change field, only the component with zero-spin projection
on the field direction Sz=0 is induced. Combining the two
pairs with the total momenta 2Q and −2Q into the triplet
combination, we see that the in-plane �Sz=0� triplet conden-
sate wave-function component �t�x��sin�2Qx�, that is, os-
cillates in space with the same period as the singlet one but is
shifted by � /2 with respect to it. Here we do not discuss the
other triplet components with Sz= 	1, which are typically
induced in case of inhomogeneous magnetization.10

The energy spectrum of the superconducting correlations
is expressed in a so-called supercurrent-carrying density of
states �SCDOS�.11–14 This quantity represents the density of
states weighted by a factor proportional to the current that
each state carries in a certain direction. Under equilibrium
conditions, the supercurrent can be expressed via the SCDOS
as13

j �� d
Nj�
�tanh 
/2T , �1�

where 
 stands for the quasiparticle energy, ��
�
=tanh 
 /2T is the equilibrium distribution function, and
Nj�
� is SCDOS. In the presence of spin effects, SCDOS
becomes a matrix 2�2 in spin space and can be represented

as N̂j =Nj,s+N j,t�, where i are Pauli matrices in spin space.
The scalar in spin space part of SCDOS Nj,s is referred to as
the singlet part of SCDOS in the paper and the vector part
N j,t is referred to as the triplet part. N j,t is directly propor-
tional to the triplet part of the condensate wave function. It is
well known that the spin supercurrent cannot flow through
the singlet superconducting leads. Therefore, N j,t does not
contribute to the supercurrent in equilibrium. Having in mind
that the triplet part of SCDOS is even function of quasipar-
ticle energy, one can directly see that this is indeed the case.

Under nonequilibrium conditions, one can change the
value of the critical Josephson current through the junction
and even realize the � state by manipulating the quasiparticle
distribution in an interlayer region. This effect was predicted
theoretically11,12 and observed experimentally15–17 for a dif-
fusive superconductor/normal metal/superconductor �SNS�
junction. The point is that positive and negative parts of SC-
DOS give energy-dependent contributions to the supercur-
rent in the positive and negative direction. The size and di-
rection of the total supercurrent depends therefore on the
occupied fraction of these states, which is analogous to the
occupation of the discrete Andreev bound states in a ballistic
system. That is, one can obtain negative Josephson current
response to small phase differences and, hence, switch the
system into � state by creating an appropriate nonequilib-
rium quasiparticle distribution in the weak link region. The
combination of the exchange field h� ��� and the spin-
independent nonequilibrium distribution function has been
considered as well.18 Under these conditions, the influence of
the nonequilibrium distribution function is also consists of
the redistribution of the quasiparticles between the energy
levels. However, it was shown that in this limit of small
exchange fields, the combined effect of the exchange field
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and the nonequilibrium distribution function is nontrivial.
For instance, part of the field-suppressed supercurrent can be
recovered by adjusting a voltage between additional elec-
trodes, which controls the distribution function.

In the present paper, we investigate the effect of nonequi-
librium occupation of the supercurrent-carrying states on the
Josephson current in SFS junction in the parameter range
����h�
 f, where 
 f is the Fermi energy of the ferromagnet.
This regime is relevant to weak ferromagnetic alloys, which
were used for the experimental realization of magnetic �
junctions. It is shown that if the distribution function be-
comes nonequilibrium and spin dependent, the supercurrent
carried by the SCDOS triplet component N j,t in the ferro-
magnet is nonzero. The magnitude of this current contribu-
tion jt can be of the same order or even larger than the
current contribution js carried by the singlet component Nj,s.
Due to the fact that the singlet and triplet components of the
anomalous Green’s function have the same oscillation period
but shifted in phase by � /2, jt can increase the usual super-
current, carried by the singlet component of SCDOS, or
weaken it, or even reverse the sign of the total supercurrent,
thus switching between 0 and � states. Experimentally, the
most probable way to realize the spin-dependent nonequilib-
rium in the interlayer is to apply a voltage to �or to pass the
dissipative current through� a spin-active material. Then un-
der appropriate conditions, even quite small voltages should
be enough to switch the system from 0 to � state and vice
versa.

That is, we consider another mechanism of supercurrent
manipulation by creating a nonequilibrium quasiparticle dis-
tribution in the interlayer, which cannot be reduced to the
redistribution of the quasiparticles between the energy levels.
In principle, the both mechanisms can be realized in a junc-
tion simultaneously. However, in this particular study we as-
sume h�� and the Thouless energy 
Th=D /d2�h, that is
the interlayer length d��F. As it is shown below, in this
regime �and for the case of low-transparency SF interfaces� a
spin-independent nonequilibrium distribution of quasiparti-
cles in the ferromagnet practically does not affect the Joseph-
son current, that is the described above mechanism of the
critical current reversal by the spin-independent redistribu-
tion of supercurrent-carrying states population is irrelevant in
this case. For high-transparency SF interfaces, the both
mechanisms contribute to supercurrent.

For a quantitative analysis, we use the formalism of qua-
siclassical Green-Keldysh functions in the diffusive limit.19

The fundamental quantity for diffusive transport is the mo-
mentum average of the quasiclassical Green’s function
ǧ�x ,
�= �ǧ�p f ,x ,
��pf

. It is a 8�8 matrix form in the product
space of Keldysh, particle-hole, and spin variables. Here x is
the coordinate measured along the normal to the junction.

The electric current should be calculated via Keldysh part
of the quasiclassical Green’s function. For the plane diffusive
junction, the corresponding expression reads as follows:

j =
− d

eRF
�

−�

+� d


8�2Tr4� �0 + �3

2
	ǧ�x,
��xǧ�x,
�
K� , �2�

where e is the electron charge and RF stands for the resis-
tance of the ferromagnetic region. 	ǧ�x ,
��xǧ�x ,
�
K is 4

�4 Keldysh part of the corresponding combination of full
Green’s functions. �i are Pauli matrices in particle-hole
space.

It is convenient to express Keldysh part of the full Green’s
function via the retarded and advanced components and the
distribution function: ǧK= ǧR�̌− �̌ǧA. Here the argument
�x ,
� of all the functions is omitted for brevity. The distribu-
tion function is diagonal in particle-hole space: �̌= �̂��0

+�3� /2+2�̂̃2��0−�3� /2. All the matrices denoted by ˆ are
2�2 matrices in spin space throughout the paper. In terms of
the distribution function, current �2� takes the form

j =
− d

eRF
�

−�

+� d


8�2Tr2	− �2�x�̂ − ĝR�x�̂ĝA − f̂R�x�̂̃ f̂̃ A

+ �ĝR�xĝ
R + f̂R�x f̂̃R��̂ − �̂�ĝA�xĝ

A + f̂A�x f̂̃A�
 . �3�

We assume that the direction of the exchange field h is spa-
tially homogeneous and choose the quantization axis along
the field. In this case, the distribution function and the nor-
mal part ĝR,A of the Green’s function are diagonal matrices in
spin space. The anomalous Green’s functions can be repre-

sented as f̂R,A= f̂ d
R,Ai2 and f̂̃ R,A=−i2 f̂̃ d

R,A, where f̂ d
R,A and f̂̃ d

R,A

are diagonal in spin space.
The retarded and advanced Green’s functions are obtained

by solving the Usadel equations19 supplemented with
Kupriyanov-Lukichev boundary conditions at SF
interfaces.20 It is worth to note that we can safely apply these
boundary conditions to the problem of plane diffusive junc-
tion even for high enough dimensionless conductance g of
the SF interface. This can be done in spite of the fact that
they are the linear in transparency approximation of more
general Nazarov boundary conditions.21 The reason is that
the effective number of interface channels N�dy / l is large
and a separate channel transparency T�g�l /dy� is usually
considerably less than unity. Here dy is the junction width
and l is the mean-free path.

Further, the condition d��F allows us to find the solution
analytically even for an arbitrary SF-interface transparency
and low temperature, that is in the parameter region, where
the equations cannot be linearized with respect to the anoma-
lous Green’s function. We start from the completely incoher-
ent junction �that is, consider the left and right SF interfaces
separately� and then calculate the corrections up to the first
order of the small parameter exp	−d /�F
 to the Green’s func-
tions. Within this accuracy, the anomalous Green’s functions
in the vicinity of left and right SF interfaces �at x= �d /2�
take the form

fd
R,A = �i�	sinh �

R,Ae−i��/2 + 4�
R,A�x�ei��/2
 ,

f̃ d
R,A = − fd

R,A�� → − �� . �4�

Here = ↑ ,↓ 	or +1�−1� within equations
 is the electron-
spin projection on the quantization axis, �=+1�−1� corre-
sponds to the retarded �advanced� functions, �=+1�−1� in
the vicinity of the left �right� SF interface, and � is the order-
parameter phase difference between the superconducting
leads. The first term represents the anomalous Green’s func-
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tion at the ferromagnetic side of the isolated SF boundary
and does not enter the following results. So, we do not give
it explicitly. The second term is the first-order correction,
originated from the anomalous Green’s function extended
from the other SF interface,

�
R,A�x� = K

R,Ae−�d/2−�x��1+i��/�F, �5�

where K
R,A is determined by the equation

�1 + i��K
R,A�1 − K

R,A2
�

=
RF�F

4Rgd
	sinh �s

R,A�1 + K
R,A2

+ K
R,A4

�

− cosh �s
R,A4K

R,A�1 + K
R,A2

�
 . �6�

Rg stands for the resistance of each SF interface, which are
supposed to be identical. sinh �s

R,A and cosh �s
R,A originate

from the Green’s functions at the superconducting side of SF
interfaces. We assume that the parameter
�RF�s /Rgd��F /s��1, where �s=�D /� is the supercon-
ducting coherence length in the leads, F and s stand for
conductivities of ferromagnetic and superconducting materi-
als, respectively. It allows us to neglect the suppression of
the superconducting order parameter in the S leads near the
interface and take the Green’s functions at the superconduct-
ing side of the boundaries to be equal to their bulk values. In
this case,

cosh �s
R,A =

− �i


����2 − �
 + �i��2
,

sinh �s
R,A =

− �i���
����2 − �
 + �i��2

, �7�

where � is a positive infinitesimal.
The SCDOS, entering the current �3� takes the form

Nj�
� = �ĝR�xĝ
R + f̂R�x f̂̃R − ĝA�xĝ

A − f̂A�x f̂̃A�

=
8�2 sin �

FRg
Im�

R�x = − �
d

2
�sinh �s

R� . �8�

The nonequilibrium distribution function in the interlayer is
proposed to be created by applying a voltage along the y
direction between two additional electrodes Nb and Nt, which
are attached to the central part of the interlayer. It is sup-
posed that the conductances of NbF and NtF interfaces are
spin dependent and equal to gb

and gt
, respectively. The

voltage Vt�Vb
� between the superconducting leads and

Nt�Nb� electrode can also be spin dependent. It can be real-
ized, for example, by attaching one �or both� of the elec-
trodes Nb or Nt to a strong ferromagnet and applying a volt-
age between the other one and the ferromagnet.

In order to obtain the distribution function up to the first
order of the parameter exp	−d /�F
, we solve the kinetic
equation for the distribution function, which is derived from
the Keldysh part of the Usadel equation. The boundary con-
ditions to the kinetic equation are also obtained from the
Keldysh part of the general Kypriyanov-Lukichev boundary
conditions. Further it is assumed that �eVt,b↑,↓

�� ���. Under

this condition, the part of the current associated with the first
three terms in Eq. �3� is only determined by the first-order
correction �

R,A to the anomalous Green’s function and the
distribution function �

�0�, calculated up to the zero order of
the parameter exp	−d /�F
,

�− �2�x�̂ − ĝR�x�̂ĝA − f̂R�x�̂̃ f̂̃ A� = Nj

�̃
�0� − �

�0�

2
, �9�

where Nj�
� is expressed by Eq. �8�.
The distribution function ��0� does not depend on x. So, it

is convenient to calculate it in the middle of the interlayer,
where disregarding the parameter exp	−d /�F
 means disre-
garding the superconducting proximity effect. Then, by con-
sidering Nb /F /Nt junction and applying Kypriyanov-
Lukichev boundary conditions Nb /F and F /Nt interfaces, we
come to the following expression for ��0� �inelastic-
scattering processes are not taken into account�:

�
�0� =

tanh

 − eVt

2T
gt

�F + dygb
�

F�gt
+ gb

� + 2dygt
gb

+

tanh

 − eVb

2T
gb

�F + dygt
�

F�gt
+ gb

� + 2dygt
gb

, �10�

�̃
�0� is connected to �

�0� by the symmetry relation �̃↑,↓
�0��
�=

−�↓,↑
�0��−
�. We focus on the case gt�F /dy or gb�F /dy,

when the y dependence of the distribution function ��0� can
be disregarded.

Substituting Eqs. �8� and �9� into Eq. �3�, we find that the
Josephson current takes the form

j =
− d

2eRF
� d


8�2�


	��
�0� + �̃

�0��Nj
 , �11�

where Nj�
� is expressed by Eq. �8� and �
�0� should be

taken from Eq. �10�. Electrical current �11� can be divided
into two parts,

j = js + jt,

js = js,c sin � =
− d

eRF
� d


8�2 	��0
�0� + �̃0

�0��Nj,s
 ,

jt = jt,c sin � =
− d

eRF
� d


8�2 	��z
�0� + �̃z

�0��Nj,t
 , �12�

where �0= ��↑+�↓� /2, �z= ��↑−�↓� /2, �̃0,z= ��̃↑	�̃↓� /2
= ��0,z�−
�, Nj,s= �Nj↑+Nj↓� /2 is the singlet part of SC-
DOS, and Nj,t= �Nj↑−Nj↓� /2 is the z component of the SC-
DOS triplet part �the other components equal to zero for the
considered case of homogeneous magnetization�. It is seen
from Eq. �12� that Nj,t gives rise to the additional contribu-
tion to the spinless electrical current if the quasiparticle dis-
tribution is spin dependent.

While Eqs. �11� and �12� are valid for arbitrary SF-
interface transparency, at first we concentrate on the discus-
sion of the tunnel limit g̃�RF�F /Rgd�1, where Eq. �6� can
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be easily solved and the integral over energy can be calcu-
lated analytically. For the analytical analysis, we choose the
most simple form for the distribution function Eq. �10� by
setting gt

→0 and Vb↓
=0. Then �↑

�0�=tanh	�
−eVb↑
� /2T


while �↓
�0�=tanh	
 /2T
. As it is demonstrated below, the re-

sults corresponding to another set of parameters, which de-
termines the particular form of the distribution function sat-
isfying Eq. �10�, qualitatively do not differ from that ones
represented here. At low temperature T� �eVb↑

�, we obtain
for the Josephson current the following result:

j =
RF�F sin �

4eRg
2d

���e−d/�F�2� cos� d

�F
+

�

4
�

+
1
�2

log� ��� + eVb↑

��� − eVb↑
�sin� d

�F
+

�

4
�� . �13�

The first term in Eq. �13� represents the part of the supercur-
rent js carried by the singlet component of SCDOS. Under
the conditions T� �eVt,b� and �eVt,b↑,↓

�� ���, it is not affected
by the fact that the distribution function is nonequilibrium, as
can be seen from Eq. �13�. The reason is that for a long
junction and h� ��� in the tunnel limit, the singlet part of
SCDOS is concentrated in the narrow energy intervals
around 
= 	 ���, as it is illustrated in panel �a� of Fig. 1. This
is opposed to the cases of diffusive SNS junction with h=0
�Refs. 11–14� and SFS junction with h��,18 where the sin-
glet part of SCDOS is finite and exhibits nontrivial energy
dependence in the subgap energy region �
�� ���. Under the
conditions T� �eVt,b� and �eVt,b↑,↓

�� ���, the distribution func-
tion �0

�0�+ �̃0
�0���sgn	
−eVb↑


+sgn	
+eVb↑

+2sgn	

� /2,

which enters the expression for js 	Eq. �12�
, practically does
not differ from its equilibrium value for energy intervals
around 
= 	 ���. That is, under the considered conditions,
the widely discussed in the literature mechanism of supercur-
rent manipulation by nonequilibrium redistribution of quasi-
particles between energy levels11,12,15–18 does not contribute.

The second term jt is caused by the triplet component of
SCDOS and vanishes in the equilibrium Vb↑

=0. As it is seen
in panel �b� of Fig. 1, the triplet part of SCDOS Nj,t is an
even function of energy and has finite value in the subgap
energy region. So, multiplying it by the distribution function,

�z
�0� + �̃z

�0� � �sgn	
 − eVb↑
 − sgn	
 + eVb↑
�/2, �14�

one obtains current contribution jt. The absolute value of this
contribution is roughly proportional to Vb↑ for small enough
values of this parameter and increases sharply when Vb↑ ap-
proaches ���. This behavior is a consequence of two facts: �i�
distribution function �14� is a constant within energy interval
	−eVb↑ ,eVb↑
 and vanishes outside it, �ii� the triplet part of
SCDOS has a particular shape shown in panel �b� of Fig. 1.

To calculate the Josephson current for the case of arbitrary
transparency of SF interfaces, one needs to solve Eq. �6�
numerically and make use of Eq. �11�. The resulting curves
as functions of eVb↑ are plotted in Fig. 2. Panel �a� shows the
current for low enough dimensionless conductance of SF in-
terface g̃=0.1 while panel �b� represents the case of highly
transparent interface g̃=3.0. Different curves correspond to
different lengths d of the junction. In dependence on Vb↑, the
current can be enhanced or reduced with respect to its value
at Vb↑=0. If the length of the equilibrium junction is not far
from the 0-� transition, then small enough voltage can
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FIG. 1. The singlet and triplet parts of SCDOS in dependence on the quasiparticle energy. The left column corresponds to the low-
transparency limit g̃=0.1 while the right column represents the high-transparency case g̃=3.0.
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switch between the states. Separate plots of the current con-
tributions js and jt are represented in panel �a� of Fig. 3 for
the low-transparency junction with g̃=0.1 and in panel �b�
for the high-transparency junction with g̃=3.0. It is seen, that
for low-transparency junction, the current and its separate
contributions js and jt behave just as described by the tunnel
limit discussed above. While the tunnel limit qualitatively
captures the essential physics for the high-transparency junc-
tion as well, there are some new features, which are dis-
cussed below.

The singlet part of SCDOS for the case of high-
transparency junction is plotted in panel �c� of Fig. 1. It is

clearly seen that as distinct from the limit of tunnel junction,
it is not only concentrated around superconducting gap edges
but is finite in the whole subgap region. It results in the
sensitivity of js to the fact that the distribution function
�0

�0�+ �̃0
�0� is nonequilibrium. In other words, upon increasing

of the SF-interface conductance the mechanism of the cur-
rent controlling based on the redistribution of the quasiparti-
cles between energy levels starts to contribute. It is seen
from panel �b� of Fig. 3 that the difference js,c�Vb↑�
− js,c�Vb↑=0� considerably grows when �eVb↑� approaches
���. It is worth to note that the absolute value of js,c is always
reduced by this mechanism. This fact leads to the reduction
in the absolute value of the high-transparency total supercur-
rent 	see Fig. 2�b�
 at eVb↑→�. This behavior should be
compared to the tunnel limit, where the dependence of js,c on
Vb↑ is negligible and absolute value of the total supercurrent
only increases for eVb↑→� due to growing contribution of
jt,c.

Now we discuss the dependence of the obtained results on
the particular shape of the distribution function. It is illus-
trated in Fig. 4. Four different examples of the distribution
function z component �z

�0�+ �̃z
�0�, satisfying Eq. �10� are

shown in the right panel. Due to symmetry relations, this
combination is always an even function of energy. The scalar
part of the distribution function is not plotted in the figure
because it does not influence the supercurrent in the tunnel
limit. The corresponding plots of the critical current in the
low-transparency limit are represented in the left panel. It
can be concluded that, while the quantitative value of the
critical current depends on the particular choice of the distri-
bution function, this choice has no qualitative effect on the
supercurrent behavior, as it was already pointed before.

In conclusion, we have studied the effects of nonequilib-
rium spin-dependent electron distribution in a weakly ferro-
magnetic interlayer on the Josephson current through SFS
junction. It is shown that the nonequilibrium spin-dependent
electron distribution gives rise to the supercurrent carried by
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the triplet component of SCDOS. Depending on voltage,
controlling the particular form of spin-dependent nonequilib-
rium in the interlayer, this additional current can enhance or
reduce the usual current of the singlet component and also
switch the junction between 0 and � states.
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